Eigenvalues and eigenfunctions of a clover plate
نویسندگان
چکیده
We report a numerical study of the flexural modes of a plate using semi-classical analysis developed in the context of quantum systems. We first introduce the Clover billiard as a paradigm for a system inside which rays exhibit stable and chaotic trajectories. The resulting phase space explored by the ray trajectories is illustrated using the Poincare surface of section, and shows that it has both integrable and chaotic regions. Examples of the stable and the unstable periodic orbits in the geometry are presented. We numerically solve the biharmonic equation for the flexural vibrations of the Clover shaped plate with clamped boundary conditions. The first few hundred eigenvalues and the eigenfunctions are obtained using a boundary elements method. The Fourier transform of the eigenvalues show strong peaks which correspond to ray periodic orbits. However, the peaks corresponding to the shortest stable periodic orbits are not stronger than the peaks associated with unstable periodic orbits. We also perform statistics on the obtained eigenvalues and the eigenfunctions. The eigenvalue spacing distribution P (s) shows a strong peak and therefore deviates from both the Poisson and the Wigner distribution of random matrix theory at small spacings because of the C4v symmetry of the Clover geometry. The density distribution of the eigenfunctions is observed to agree with the Porter-Thomas distribution of random matrix theory. PACS. 05.45.Mt Semiclassical chaos (“quantum chaos”) – 46.40.-f Vibrations and mechanical waves
منابع مشابه
On Generalization of Sturm-Liouville Theory for Fractional Bessel Operator
In this paper, we give the spectral theory for eigenvalues and eigenfunctions of a boundary value problem consisting of the linear fractional Bessel operator. Moreover, we show that this operator is self-adjoint, the eigenvalues of the problem are real, and the corresponding eigenfunctions are orthogonal. In this paper, we give the spectral theory for eigenvalues and eigenfunctions...
متن کاملAsymptotic Distributions of Estimators of Eigenvalues and Eigenfunctions in Functional Data
Functional data analysis is a relatively new and rapidly growing area of statistics. This is partly due to technological advancements which have made it possible to generate new types of data that are in the form of curves. Because the data are functions, they lie in function spaces, which are of infinite dimension. To analyse functional data, one way, which is widely used, is to employ princip...
متن کاملSturm-Liouville Fuzzy Problem with Fuzzy Eigenvalue Parameter
This study is on the fuzzy eigenvalues and fuzzy eigenfunctions of the Sturm-Liouville fuzzy problem with fuzzy eigenvalue parameter. We find fuzzy eigenvalues and fuzzy eigenfunctions of the problem under the approach of Hukuhara differentiability. We solve an example. We draw the graphics of eigenfunctions. We show that eigenfunctions are valid fuzzy functions or not.
متن کاملOn the determination of asymptotic formula of the nodal points for the Sturm-Liouville equation with one turning point
In this paper, the asymptotic representation of the corresponding eigenfunctions of the eigenvalues has been investigated. Furthermore, we obtain the zeros of eigenfunctions.
متن کاملNumerical Analysis of Stability for Temporal Bright Solitons in a PT-Symmetric NLDC
PT-Symmetry is one of the interesting topics in quantum mechanics and optics. One of the demonstration of PT-Symmetric effects in optics is appeared in the nonlinear directional coupler (NLDC). In the paper we numerically investigate the stability of temporal bright solitons propagate in a PT-Symmetric NLDC by considering gain in bar and loss in cross. By using the analytical solutions of pertu...
متن کامل